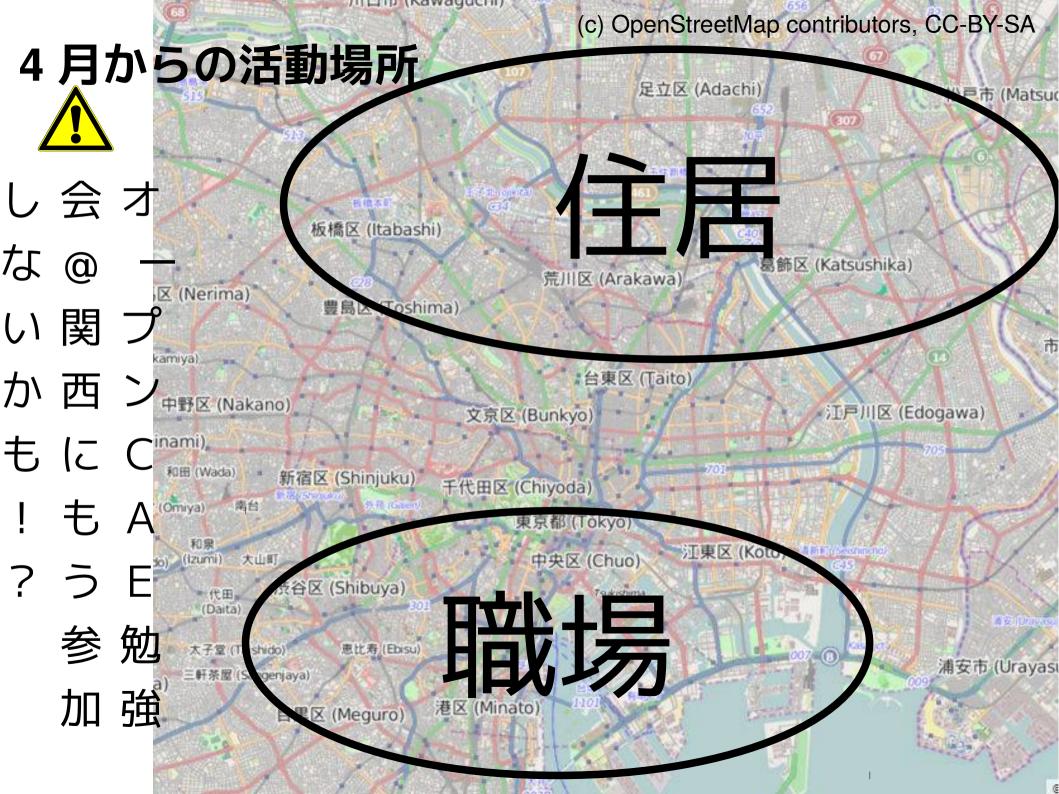
自己紹介

妹尾賢 (SENOO, Ken)

⊠contact@senooken.jp

ttps://social.senooken.jp/senooken

2014-03-08

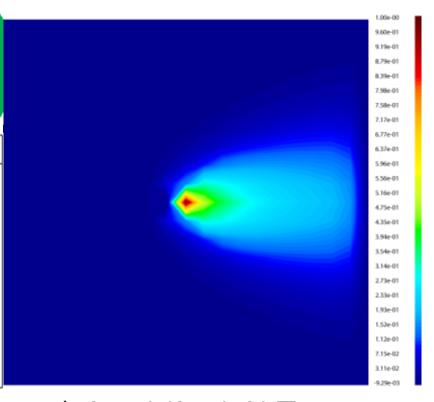

第 28 回 オープン CAE 勉強会 @ 関西

http://atnd.org/events/47570

URL: https://senooken.jp/public/20140308/

経歴

- ■大阪工業大学環境工学科卒業
- ■京都大学大学院都市環境工学専攻 修士課程修了見込み
- ■数値解析メインの 建設コンサルタント会社に就職予定

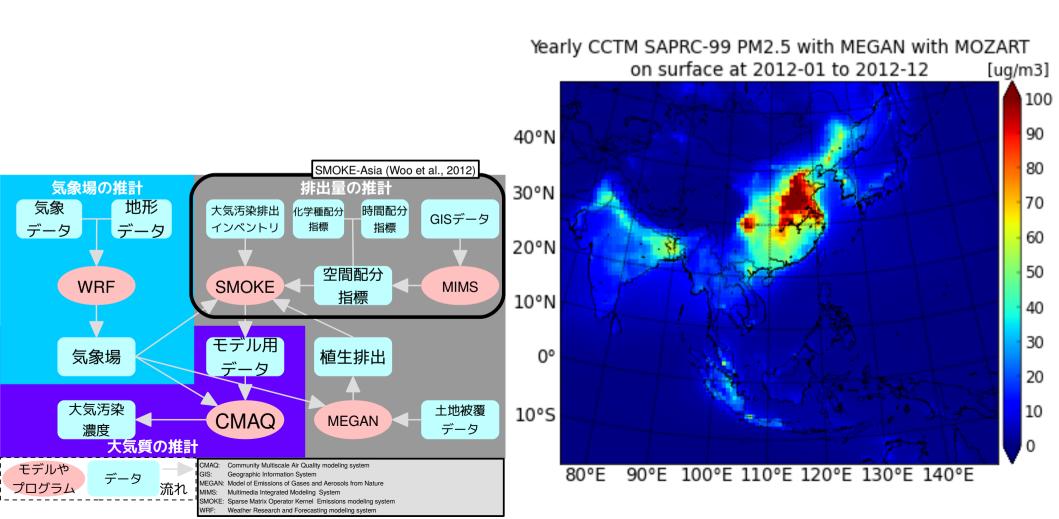


卒論でこんなんやってました

毎日: 有限要素法による二次元定常熱 移流拡散問題の解析

$$v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} - k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) = 0$$

名称	単位	定義や条件
温度	K	未知関数 $T(x,y)$
流速	m/s	既知とする
温度伝導率	m^2/s	$k = k_i = \kappa_i / (\rho c_p)$
熱伝導率	$W/(m\cdot K)$	材質内で一定値かつ等方性 $\kappa = \kappa_x = \kappa_y = \kappa_z$
密度	${ m kg/m^3}$	材質内で一定値
定圧比熱容量	$J/(kg \cdot K)$	材質内で一定値
発熱率	$\mathrm{J/s}$	考慮しない
	温度 流速 温度伝導率 熱伝導率 密度 定圧比熱容量	温度 K 流速 m/s 温度伝導率 m²/s 熱伝導率 W/(m · K) 密度 kg/m³ 定圧比熱容量 J/(kg · K)


安定化を施した結果

安定化の手法

▶SUPG(Streamline Upwind/Petrov Galerkin) 法

修論でこんなんやってました

題目: 副次的効果の評価のための 大気質モデルの精度向上に関する研究

興味·関心

- ■フリーソフト
- ■解析・シミュレーション
- ■動物愛護
- ■菜食主義
- Python/C++
- LyX (LaTeX)
- LibreOffice
- Vim

自由な社会に必要

何が正しいかの探索に必要

動物や地球にとって必要

フリーソフトやデータ解析で強力

高性能なワープロ

フリーのオフィス

最高級のテキストエディタ

OpenFOAM への興味

- 「SGI が OpenCFD 社を買収」というニュースで始めて認知
- 卒論の時に国産の FEM ソフト「ADVENTURE」を認知
 - ▶ 使えれば、就職してからも使えるのでは?
- OpenFOAM の構造と CFD の基礎(東京大学丁世珉, 2009)で OpenFOAM で金融工学のソルバがある!
 - (http://www.opencae.jp/data/OpenFOAMLectureCourses/200905/20090513_jeong_BasicCFD.pdf)
- 関西での勉強会の存在を Twitter で知る。
 - ▶ 勉強会がどういう様子なのか興味本位で参加
 - ▶ 特に明確なやりたいこと・目標はない(金融工学の計算に若干興味)
 - ➤ OpenFOAM 使えたら仕事や研究で便利かも

オープン CAE に関する質問

- ■推薦図書
- ■必要な知識
 - ▶プログラミング言語・モジュール
 - ➤ スタイルガイド
 - ➤ ソルバやメッシュ生成アルゴリズム
 - ▶連携方法
 - ▶規格(データフォーマットの統一規格)など
 - ▶データの可視化方法
- ■普通の人がどう使えば便利か

質問への回答(2014-03-10追加)

- 言語
 - ➤ Python Ø Pyfoam Copnenmdn
- スタイルガイド
 - ➤ OPNECAE 学会、 OpenFOAM Wik 、インデントとかブレースの書き方
- ソルバ:
 - ➤ 開発者の D 論に詳しい。メッシュも論文ある。
- 連携:
 - ➤ Fluent とかスター CEE。メッシュ生成は外部ソフトを使うと楽。
 - ➤ 境界条件とか難い。
 - ➤ 四面体は結構ある。 DEXCS というプラットフォームがある。
- フォーマット:
 - ▶ テキスト形式も可能。
- アドバイス:会社で使うなら反対される。いかに説得するか。